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In the study, wave propagation along aorta is studied for different normal and pathological
conditions in distal arteries. The mathematical model is based on the axisymmetric incom-
pressible Navier-Stokes equations for blood and momentum equations for an incompressible
viscoelastic arterial wall. The solution has been found as a superposition of forward and bac-
kward running waves. The blood pressure and flow curves measured by ultrasound in larger
systemic arteries of ten healthy volunteers have been used for identification of the model
parameters. It is shown that individual geometry plays an essential role in the location of
positive and negative wave reflection sites along the aorta and, thus, in the pressure and
flow patterns as well as blood distribution into the side branches. The model is validated by
comparative study with the same dependencies computed previously on a 55-tube model as
well as on the measurement data. The model can be used for determination of the individual
parameters for patient-specific cardiovascular models and further in silico modeling of the
outcomes of surgical and therapeutic procedures.
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1. Introduction

Models and methods of theoretical and applied mechanics form a basis for treatment and bio-
mechanical interpretation of measured cardiovascular signals like blood pressure, velocity, flow
rate, vessel wall oscillations and others (Nichols and O’Rourke, 2005). Significant progress in non-
-invasive measurement techniques like computed tomography (CT), magnetic resonance imaging
(MRI), Doppler ultrasound (US), and whole body scanner (WBS) allows detailed 3D imaging
of the blood circulation system up to medium arteries (CT, MRI, WBS), pressures and blood
flows in larger arteries (US), 3D velocity profiles in larger (MRI) and medium (WBS) arteries,
and integral blood flow and geometry of small vessels (micro CT) (Salvi, 2017). Detailed mathe-
matical models based on fluid mechanics for blood flows and fluid-structure interaction (FSI)
for vessel wall oscillations are needed to treat and interpret the measured data from the biome-
chanical point of view. The future technologies of medical diagnostics will be based on detailed
computational results on patient-specific biomechanical models of blood circulation. The inverse
problem solution on such models will allow determination of the most dangerous sites of wave
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reflections in the system that cause prolonged blood insufficiency in some organ(s), which leads
to development of chronic diseases.

Aorta is the main blood vessel that directs, controls and distributes the blood flow into
different parts of the body, internal organs and tissues. Small excitations produced by heart
contractions propagate along the aorta and its branches at the speeds c ∼ 5-12m/s, which exce-
eds the average linear blood flow velocity in the aorta V ∼ 50-80 cm/s (Nichols and O’Rourke,
2005). Therefore, before the injected portion of blood reaches the distal part of the aorta, the
propagating pulse wave reflects at each non-uniformity like aortic side branches, stenoses, aneu-
risms, atherosclerotic plaques in both downstream and upstream directions what significantly
influences the flow rate, blood distribution and delivery (Salvi, 2017; Hughes et al., 2013). In
medicine, there is a known phenomenon of “blood stealing” when one organ suffers of blood
insufficiency while another receives more blood that is needed due to anomalous wave reflections
and other reasons (Takach et al., 2006). The phenomenon was explained on the model of blood
circulation as a hydraulic system, but later it was established that the wave components, espe-
cially the first harmonics delivered blood to the organs through aorta as a complex waveguide
(Wang and Parker, 2004).

Individual geometry of the aorta and its local congenital or acquired abnormalities (Nichols
and O’Rourke, 2005; Salvi, 2017; Hughes et al., 2013) are essential for development of complex
diseases. For instance, a significant reflected wave originated at the aortic bifurcation may sti-
mulate development of aneurism of abdominal aorta (Salvi, 2017; Hughes et al., 2013; Hughes et
al., 2013; Takach et al., 2006). Wave reflections at the aortic narrowing or coarctation are dan-
gerous for low blood delivery to the organs below the narrowed segment (Salvi, 2017; Hughes
et al., 2013). Early wave reflections produced in rigid aorta cause direct damage to the aortic
valve and development of systolic hypertension (Salvi, 2017; Hughes et al., 2013). Stenoses of
the main coronary arteries produce wave reflection and insufficient blood delivery to the heart
(Nichols and O’Rourke, 2005; Salvi, 2017).

Aortic flow is complex and not completely understood yet. The MRI studies detected ap-
pearance of vortex, helical, and reverse flows in aorta (Salvi, 2017; Hughes et al., 2013; Takach
et al., 2006). Retrograde and rotational blood flows in the thoracic aorta were detected in all
patients with systemic emboli and mobile protruding aortic atheroma, but general mechanisms
of such flows have not been detected (Westerhof et al., 2006; Michail et al., 2018).

Since all internal organs are combined by the aorta into a complex biomechanical system, the
properties of aorta as a waveguide are essential for deeper understanding of the diseases and the
functional reasons of their development. The complex consideration of the human body is needed
for advanced strategies of medical knowledge, diagnostic and treatment/surgery planning, which
is the aim of the recently announced global “One Health Project” (Hall and Ba Le, 2015). The
project emphasizes that medical diagnostics of a certain disease or local impairment is not a
local diagnostic problem only, and needs a system dynamics approach to the entire vasculature.
This paper is dedicated to further development of the most complete biomechanical model of
human aorta that includes all known side branches with their detailed geometry. The model
could be completed by an anomalous number and location of some side branches only. The
model could be a basis for the one-health approach to medical diagnostics, treatment planning
and monitoring as a digital technology for medicine.

2. Biomechanical models of human aorta

The very first model of aorta with its side branches was proposed in (Westerhof et al., 1969) based
on the post-mortem measurements on an individual (175 cm height 75 kg mass). It contained
21 segments including 10 aortic segments and 11 side branching (Fig. 1) with diameters, lengths
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and wall thicknesses averaged on four datasets. It is a part of the well-established 55-tube model
of the human systemic arterial tree. This model was validated on numerous in vivo data and
found useful for general understanding of such mechanical phenomena as retrograde blood flow
during diastole in some arteries (Wang and Parker, 2004), influence of individual anatomy of
the radial and ulnar arteries on the blood flow in the upper extremities (Alastruey et al., 2006),
structure of the circle of Willis on the blood distribution in the brain (Alastruey et al., 2007)
and some others. In such problems, any computations on local models of arteries in brains
or upper extremities is insufficient without accounting for aorta as the main pathway for the
blood delivery. It was also shown that the 21-tube model of aorta corresponds to the so called
“optimal waveguide” that provides almost zero wave reflections along it due to well-matched
wave admittances at each side branching (Wang and Parker, 2004).

Fig. 1. The 55-tube model of human systemic arteries with the 21-tube model of aorta with:
(1) brachiocephalic, (2) left carotid, (3) left subclavian, (4) intercostal, (5) ciliac, (6) left renal, (7) right

renal, (8) upper mesenteric, (9) low mesenteric, (10) left iliac, (11) right iliac arteries

Later, the 55-tube model was completed to a 128-tube model, but the model of aorta has
not been improved. Despite such a simplification, the 55-tube model exhibited good qualitative
correspondence to in vivo data, but now much more detailed models are needed to treat teraby-
tes of CT, MRI, US, WBS information and other available medical data. Besides, doctors need
a more detailed description of their region of interest along the aorta. For instance, pulmonolo-
gists need the complete structure of the pulmonary, intercostal and subcostal arteries along the
thoracic aorta to understand blood circulation in the respiratory system, while in the 21-tube
model of aorta only one intercostal artery is present (Fig. 1). Nephrologists are interested in the
complete structure of individual aorta that determines blood delivery to kidneys.

The biomechanical model of aorta as a waveguide composed by 93 tubes has been presented
in our previous studies (Kizilova and Mizerski, 2018; Kizilova et al., 2019). As it was shown
there, the aorta is an optimal waveguide not only due to well-matched branching with zero wave
reflections. The most important is that along some regions of the thoracic aorta negative wave
reflections appear which facilitates blood delivery to the abdominal aorta and low extremities
due to the suction effect (Kizilova and Mizerski, 2018). In this paper, the influence of wave
reflections on pulse wave propagation along the aorta is studied on the 93-tube model. The aim
of the work is to study sensitivity of the model to individual geometry and material parameters
of the vessels, and anomalous low or high resistivity of some side branches, which is essential for
practical implementation of the model in medical diagnostics.
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3. Review of mathematical models of aortic flow

Over the past decade, the strong need of multi-scale models of the human circulation system for
numerical simulations and computation-based approaches for medical diagnostics and decision
making has been substantiated (Raphael et al., 2016). It was shown that the blood flow and wave
propagation in large and medium arteries can be described on 1D (plug flow and plane waves)
and 2D (axisymmetric flow and cylindrical waves) models, whereas small vessels and capillaries
can be studied on 0D (lumped parameter) models treated as outlets boundary conditions for 1D
and 2D models. The regions of specific interests like coronary arteries for cardiologists, kidneys
for nephrologists, lungs for pulmonologists, and others can be computed on 3D FSI models
embedded into the general simplified 1D/2D model of larger arteries (Quarteroni, 2001).
The problem of mathematically correct boundary conditions at the outlet of terminal tubes

was discussed in (Quarteroni, 2001; Formaggia et al., 2001). It was shown that the 0D models
can serve not only as terminal elements for 1D models (Nichols and O’Rourke, 2005; Formaggia
et al., 2001) but can also substitute 1D elements for model simplification purposes (Quarteroni
et al., 2000; Epstein et al., 2015). The synthetic 3D+1D, 3D+0D and 1D+0d models of aorta
were worked out, and the influence of geometry and wall properties on P (t) and V (t) waveforms
in aorta was studied (Quarteroni, 2001; Quarteroni et al., 2000; Epstein et al., 2015; Narayan et
al., 2017; Negoita et al., 2017; Diaz-Zuccarini et al., 2006). In this Section, a brief review of the
models used for computations on the 93-tube model of human aorta is given.

3.1. The lumped parameter (0D) model

The model considers a complex arterial network as a single elastic chamber with undisturbed
volume V0, compliance C and peripheral resistivity Z (Nichols and O’Rourke, 2005). The pressure
oscillations P (t) in the chamber are governed by the equation for pressure

C
dP

dt
= Qin(t)−

P

Z
(3.1)

where Qin(t) is the blood inflow into the chamber.
The model was formulated by Otto Frank in 1899 for the aorta as a single elastic chamber

in which Qin(t) was the blood outflow from the left ventricle measured on the patient. For the
55-tube model, the function Qin(t) corresponds to the blood outflow from the corresponding
open-end tube, and the 0D element models the inner organ. The typical parameters for 24 open-
end tubes of the 55-tube model can be found in a series of papers (Wang and Parker, 2004;
Alastruey et al., 2006, 2007).
When the function Qin(t) is known from the measurements, the solution to (3.1) is

P (t) = exp
(

− t

ZC

)

(

P0 +
1

C

t
∫

0

Qin(τ) exp
( τ

ZC

)

dτ

)

(3.2)

where P0 = P (0) is the diastolic pressure.
Equation (3.2) describes exponential pressure decay during the diastole when Qin = 0 and

allows determination of the model parameters C and Z from the measured P (t) curves. Frank
also modeled the aorta as a series connection of two elastic chambers with different resistive and
compliant properties (thoracic and abdominal aorta) and studied relations between the pressures
P1(t) and P2(t) in them, depending on their properties.

3.2. 1D flow model (plane waves)

The 1D model of blood flow in compliant tubes deals with a periodic flow V (t, x), P (t, x)
of an incompressible Newtonian fluid along a cylindrical tube of an arbitrary cross-section
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S(t, x)
∣

∣

t=0
= S0(x) (undisturbed state) (Nichols and O’Rourke, 2005)

∂S

∂t
+
∂(V S)

∂x
= 0

∂V

∂t
+ V

∂V

∂x
= − 1

ρf

∂P

∂x
+
kµfV

ρfS
(3.3)

where V is the axial velocity, ρf and µf are density and viscosity of the fluid, k is the friction
coefficient at the wall.

According to the experimental data (Alastruey et al., 2006, 2007; Epstein et al., 2015), the
rheological relation for the 1D model of the arterial wall can be approximated as

P (S) = P0 +
β

S0

(√
S −

√

S0
)

β =
4
√
πEh

3(1− ν2) (3.4)

where E, h, ν are Young’s modulus, thickness and Poisson’s ratio for the arterial wall,
P0 = P (S0).

Model (3.3)-(3.4) is very popular for blood flow computations in complex geometries of
the human systemic arterial tree (Wang and Parker, 2004), brain arteries (Alastruey et al.,
2007), upper and lower extremities (Alastruey et al., 2006, Karamanoglu et al., 1995). It could
be reduced to model (3.1) by determining the resistivity and compliance of each tube in the
geometrical model as

Z =
ρfc

S0
C =

1

ρf

L
∫

0

S0(x)

c20
dx c =

√

√

√

√

β
√
S

2ρfS0
(3.5)

where c is the pulse wave speed, c0 = c
∣

∣

S=S0
, L is length of the tube.

The resistivity and compliance of arterial bifurcations (branches) can be computed as parallel
and serial connections of single tubes (Epstein et al., 2015).

3.3. Axisymmetric 2D flow (cylindrical waves)

The model was developed by John R. Womersley in 1855 and was based on linearized in-
compressible Navier-Stokes equations for an axisymmetric pulsatile flow with blood velocity
v(t, r, x) = [vr, 0, vx] and pressure p(t, r, x)

1

r

∂(rvr)

∂r
+
∂vx
∂x
= 0

ρf
∂vx
∂t
= −∂p

∂x
+ µ

(1

r

∂

∂r

(

r
∂vx
∂r

)

+
∂2vx
∂x2

)

ρf
∂vr
∂t
= −∂p

∂r
+ µ

(1

r

∂

∂r

(

r
∂vr
∂r

)

− vr
r2
+
∂2vr
∂x2

)

(3.6)

and momentum equations for the axisymmetric displacement u = [ur, 0, ux] of the compressible
elastic wall of a circular tube with undisturbed radius R0 (Nichols and O’Rourke, 2005)

ρs
∂2ux
∂t2
= µ∗

(1

r

∂

∂r

(

r
∂ux
∂r

)

+
∂2ux
∂x2

)

+ (µ∗ + λ∗)
∂∆

∂x

ρs
∂2ur
∂t2
= µ

(1

r

∂

∂r

(

r
∂ur
∂r

)

− ur
r2
+
∂2ur
∂x2

)

+ (µ∗ + λ∗)
∂∆

∂r

∆ =
1

r

∂(rur)

∂r
+
∂ux
∂x

(3.7)

where λ∗, µ∗ are Lame’s coefficients, ρs is wall density.



22 N. Kizilova et al.

Systems (3.6) and (3.7) are coupled via flow and stress continuity conditions at the fluid-solid
interface r = R0. The fastening conditions (u = 0) or the unloading conditions (σn = 0) for
deep and surface arteries, accordingly, can be applied at the outer surface r = R0 + h0 of the
tube, where σn is the normal stress and h0 is undisturbed wall thickness (Nichols and O’Rourke,
2005). When the pressure oscillation at the inlet of the tube is given as a Fourier series

x = 0 : P =
∞
∑

k=0

P 0k (r)e
iωkt (3.8)

the solution to (3.6) and (3.7) can also be found as a Fourier series for the variables vr, vx, ur,
ux, p. The amplitudes of the corresponding waves can be found via the Bessel functions.
J.R. Womersley obtained the solution to (3.6)-(3.8) for an infinite tube. In the case of finite

arteries, the pressure and flow continuity conditions at the outlet of the tube must be added in
the form

x = L :

R
∫

0

rp dr = πR2Zt

R
∫

0

rvx dr (3.9)

where Zt is the resistivity of terminal (downstream) vasculature, all coefficients of integration
in the solution to (3.6), (3.7) can be found.
Later, model (3.6), (3.7) was generalized for circular tubes with non-constant radius

R0(x) =
√

S0(x)/π, tethered tubes with corrected boundary conditions, and incompressible
viscoelastic walls with different rheology (Nichols and O’Rourke, 2005; Kizilova et al., 2010).
For the most popular Kelvin-Voigt model

τs
∂σ

∂t
+ σ = Eε+ µs

∂ε

∂t
(3.10)

where ε is strain, τs is stress relaxation time, µs is viscosity of the wall. Then the efficient Lame
coefficient µ∗ = (E + iωµs)/(1 + iωτs) must be used in (3.7). For the Voigt model (τs = 0), the
generalized Lame coefficient is µ∗ = E + iωµs.
In (3.9), the simplest one-element model with resistivity Zt is used. A more general appro-

ach is based on the application of the 0D model (3.1) with two elements, i.e. 3- or 4-element
Windkessel with double resistivity, compliance and inductance (Nichols and O’Rourke, 2005).
In the 2D case, the wave speed is a complex value

c = cr + ici = c0

√

1− F01
1− ν2 e

iθ c0 =

√

Eh

2ρfR
(3.11)

where c0 is determined by (3.1), F01 = 2J1(δ)/(δJ0(δ)) is the Womersley function, J0, J1 are

the Bessel functions of the first kind and orders 0 and 1, accordingly, δ = α
√
i3, α = R

√

ωρf/µf
is the Womersley number, θ is the phase shift between the pressure and the wall displacement
due to wall viscosity. For the Kelvin-Voigt rheological model (3.10) of the wall, one can easily
compute

θ(ω) = tan
ω(µs − Eτs)
E + ω2µsτs

(3.12)

The resulting complex dependence c(ω) defined by (3.11) and (3.12) determines wave di-
spersion, i.e. dependence of the wave speed on the frequency. The value cr in (3.11) corresponds
to the wave speed, while ci determines its spatial amplification rate. When model (3.6), (3.7)
is applied to a complex network of tubes corresponding to a vascular system, the equations
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are separately solved for each tube and the unknown constants can be found from the pressure
and flow continuity conditions at the bifurcations of the tubes. Usually, branching of the parent
vessel with diameter d0 into two (d1, d2) of three (d1, d2, d3) daughter tubes is most common
in vascular networks. When the characteristic wave admittances Yj of the tubes (Nichols and
O’Rourke, 2005)

Yj =
πd2j
ρfc0

(3.13)

are not matched, and Y0 6= Y1+ Y2 in the bifurcations or Y0 6= Y1 + Y2 + Y3 in the trifurcations,
the reflected waves appear. Then the solution to (3.6), (3.7) can be found as a superposition of
forward and reflected waves in the form (Nichols and O’Rourke, 2005)

P (j)(t, xj) = P
(j)
0

[

exp
(

iω
t− xj
cj

)

+ Γj exp
(

iω
t+ (xj − 2Lj)

cj

)]

Q(j)(t, xi) = Y
(j)P

(j)
0

[

exp
(

iω
t− xj
cj

)

− Γj exp
(

iω
t+ (xj − 2Lj)

cj

)]

(3.14)

where j is the number of the tube, P (j)(t, xj) and Q
(j)(t, xi) are pressures and volumetric flow

rates, P 0i = Pi
∣

∣

xi=0
is the wave amplitude at the inlet of the tube, xj ∈ [0, Lj ] is the longitudinal

coordinate computed from the inlet of each tube with length Lj, cj is the wave speed determined
by (3.11) for each tube, Γ = pb/pf is the wave reflection coefficient, pb and pf are the amplitudes
of the backward and forward waves.
According to (3.14), any positive wave reflection (Γ > 0) leads to an increase in the pressure

amplitude and a decrease in the flow rate, because any reflected wave generates a retrograde
flow (Kizilova, 2006). When Γ < 0, the so called negative wave reflection is observed. Then the
reflected wave propagates downstream and brings additional amount of fluid, which leads to a
decrease in pressure at the outlet, increase in the pressure drop along the tube and, therefore,
to an increase in the flow rate, which is known as the suction effect (Raphael et al., 2016).
Negative wave reflections were found in the pulmonary circulation (Baksi et al., 2019), coronary
vasculature (Hollander et al., 2001), along the thoracic aorta (Kizilova et al., 2019; Kizilova and
Mizerski, 2018, and some others).
According to the Lighthill (1978) theory of wave reflection in the arteries

Γ =

Y
(0)
0 −

m
∑

j=1
Y
(j)
0

Y
(0)
0 +

m
∑

j=1
Y
(j)
0

(3.15)

where the superscript indicates the number of the artery in the branching; 0 is for the parent
artery, j = 1, 2, . . . ,m are for daughter arteries; m = 2 for bifurcations, m = 3 for trifurcations.
It is important to note that for the complex wave velocity (3.11), (3.12), the wave admittance

and reflection coefficients become complex values. Therefore, the complex reflection coefficient
Γ = Γr+iΓi in (3.15) will contribute not only to the amplitude of the pressure and flow waves Γr,
but also to the phase shift Γi between the forward and reflected waves due to viscoelasticity of
the wall.

3.4. 3D fluid-structure interaction model

The formulation of the general problem of blood circulation in the individual CT-based
geometry is based on non-linear 3D Navier-Stokes equations for blood

∇ivi = 0 ρf
(∂vi
∂t
+ vk∇kvi

)

= −∇ip+ µf∆vi (3.16)

and mass and momentum balance equations for an incompressible viscoelastic wall
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∇iui = 0 ρs
∂2ui
∂t2
= −∇ips +∇kσik

τs
∂σi
∂t
+ σi = Aikεk + µs

∂

∂t
εi

(3.17)

where Aik is the matrix of elasticity coefficients, σi and εi are stress and strain vectors in the
form, a1−6 = {a11, a22, a33, a23, a13, a12}, other variables are the same as in (3.6) and (3.7).
The 3D model (3.16)-(3.18) is usually solved by FEM for complex geometries restored from

CT scans, MRI or other medical images (Salvi, 2017; Zenini et al., 2007). Due to the time
consuming FEM computations, only truncated models with 1-10 vessels of arbitrary or realistic
geometry can be computed, like the abdominal aorta with two renal and two iliac arteries, an
8-tube model of the aortic arch, coronary arteries, femoral artery, carotid arteries and others.
In the most of the studied cases, the vessel walls were treated as rigid.

4. Materials and methods

Geometry of arterial systems is usually described by sets of diameters, lengths, branching an-
gles, wall properties {Lj , dj , αj , hj , Ej , νj , θj}Nj=1 and topology of the vasculature (connectivity
matrix). In this paper, regularities of wave propagation along the most complete model of the
human aorta with all existing side branches is considered. The considered model is composed
of 36 aortic segments and 57 side branches (Fig. 2); the former are feeding arteries of the inner
organs like heart (N1,2), spleen (N16), liver (N17), kidneys (N21,22), intestine (N18,26), whereas
the others supply glands, muscles and other tissues. Most of the arteries feeding the respiratory
system and vertebral column are absent in the common 55-tube model. As it was mentioned
above, only one intercostal artery (N4 in Fig. 1) is included in the 55-tube model while actually
there are 9 pairs of intercostal and 13 more pairs of other medium arteries (Fig. 2). They produce
a small but continuous contribution to the aortic conductivity, pressure and flow distributions
(Kizilova et al., 2019; Kizilova and Mizerski, 2018). Due to their synergy in the negative wave
reflection, the resulting influence may be essential. It was shown, thanks to their presence, that
the blood flow accelerates due to the suction effect.

Fig. 2. Model of the aorta: left (1) and right (2) coronary, aortic root (3) and arch (4), brachiocephalic
trunk (5), left carotid (6), subclavian (7), bronchial (8), intercostal (9), esophageal (10),

mediastinal (11), pericardial (12), diaphragmal (13), subcostal (14), celiac trunk (15), splenic (16),
hepatic (17), upper mesenchymal (18), suprarenal (19), upper lumbar (20), left (21) and right (22)

renal, lumbar (23), testicular (24), lower lumbar (25), lower mesenchymal (26), sacral (27) and iliac (28)
arteries; the arrow indicates blood inflow; H – diaphragm, I-VII – measurement sites

The morphometric data used in this study have been measured on five cadavers during post-
-mortem examination (Kizilova et al., 2019; Kizilova and Mizerski, 2018). The P (t) and V (t)
waveforms in different locations along the aorta have been measured on ten healthy volunteers
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(ages from 18 to 42) by triplex scanner “Sonolaine Elegra Advanced” (Siemens) (Fig. 3a). The
corresponding locations are marked in Fig. 2 as I (for Fig. 3a) and II (for Fig. 3b). The P (t)
and V (t) curves in the main coronary arteries have been measured by transesophageal ultraso-
und. The measured curves have been smoothed by the Bayesian filter and analyzed. In total,
150 pairs of P (t) and V (t) curves have been recorded (30 measurement sites per an individual)
and used for validation of the individual 93-tube model of aorta (Kizilova and Mizerski, 2018).
The detailed measurement data for the five individuals and the averaged values are reported in
(Kizilova et al., 2019; Kizilova and Mizerski, 2018). Due to different body height of the individu-
als, their geometric models have been normalized by the total length along the aorta from the
aortic valve to the aortic bifurcation. The data on relative locations of the branches along the
aorta are presented in Table 1 in comparison to the similar 55-tube tree data given in (Wang
and Parker, 2004). As it is clear from Table 1, the geometric datasets are quite different and
exhibit individual scatter in lengths of the aortic segments that can influence local travel times of
the incident and reflected waves in each segment and along the entire aorta. The corresponding
distributions of wave speeds and travel times are presented in Fig. 4a,b respectively. The wave
speeds have been computed on morphometric data (Kizilova et al., 2019; Kizilova and Mizerski,
2018) by (3.11), (3.12) or taken from the tables computed in (Wang and Parker, 2004; Epstein
et al., 2015). The curves represent physically known dependence of the pulse wave velocity on
the diameter of the blood vessel or (in experiments) latex tube (Nichols and O’Rourke, 2005;
Hughes et al., 2013), as it is also clearly visible from (3.11). The wave speed in the fluid-filled
elastic tubes increases while the diameter decreases. Since the aorta is a tapered viscoelastic
tube, the wave speed non-linearly increases along it, which is responsible for pulse wave pe-
aking and steeping, which are well known effects in arteries (Nichols and O’Rourke, 2005; Salvi,
2017). The lengths of aorta are scaled to 1, and it is evident that the data computed on our
datasets for five individuals well correspond to the recent data from (Epstein et al., 2015). At
the distances x 17-19% and x 70% of La, rapid increases in the wave speed determined by
sudden physiological narrowing of the aorta are present. The earlier data (Wang and Parker,
2004) do not demonstrate such a clear dependence but also exhibit non-linear behavior. The
corresponding experimental dependencies c(x) (Salvi, 2017; Hughes et al., 2013) are smoother
because of the smaller number of locations (3.4)-(3.6) and more space between them for smooth
approximation.

Fig. 3. Measured flow rate curves Q(t) at locations III (a) and V (b) in Fig. 2

5. Numerical procedure

The material parameters and approximations for the wall thickness and Young’s modulus and
the same as in (Kizilova and Mizerski, 2018) and correspond to the parameters of the healthy
blood and aortic wall.
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Table 1. Relative locations of the side branching along the aortic length scaled to 1

Artery
Relative distance

[13], [15] [11] [28] [31]

Aortic valve 0 0 0 0

Coronary 0.0043 ± 0.014 – – –

Brachiocephalic 0.1333 ± 0.008 0.041 ± 0.0098 0.09009 0.103943

Left common carotid 0.1660 ± 0.009 0.075 ± 0.011 0.135135 0.145161

Left subclavian 0.1858 ± 0.013 0.12 ± 0.011 0.222973 0.225806

1st pair of intercostals 0.1872 ± 0.007 0.20 ± 0.013 – –

2nd 0.1901 ± 0.015 0.24 ± 0.014 – –

Bronchial 0.2496 ± 0.01 – – –

3rd 0.2950 ± 0.01 0.29 ± 0.0066 – –

Bronchial 0.3404 ± 0.009 – – –

4th 0.3858 ± 0.01 0.34 ± 0.0087 – –

Esophageal 0.4015 ± 0.008 – – –

5th 0.4312 ± 0.01 0.38 ± 0.0080 0.34009 0.333333

Mediastinal 0.4525 ± 0.006 – – –

6th 0.4766 ± 0.013 0.42 ± 0.0064 – –

Esophageal 0.4994 ± 0.008 – – –

7th 0.5220 ± 0.014 0.47 ± 0.0087 – –

Mediastinal 0.5327 ± 0.009 – – –

8th 0.5674 ± 0.01 0.51 ± 0.0096 – –

Pericardial 0.5923 ± 0.015 – – –

9th 0.6128 ± 0.007 0.55 ± 0.012 – –

Pericardial 0.6582 ± 0.01 – – –

Subcostal artery 0.6837 ± 0.011 0.61 ± 0.012 – –

Diaphragmal 0.7121 ± 0.0065 – – –

Celiac trunk 0.7248 ± 0.007 0.69 ± 0.013 0.574324 0.548387

Upper mesenchymal 0.7716 ± 0.008 – 0.693694 0.657706

Suprarenal 0.7730 ± 0.01 – – –

Upper lumbar 0.7745 ± 0.015 – – –

Right renal artery 0.7751 ± 0.013 0.73 ± 0.012 0.716216 0.698925

Left renal artery 0.7759 ± 0.007 0.78 ± 0.014 0.738739 0.740143

Lumbar 0.8043 ± 0.01 – – –

Testicular 0.8170 ± 0.009 – – –

Lower lumbar 0.8752 ± 0.008 – – –

Lower mesenchymal 0.9007 ± 0.011 – 0.977477 0.958781

Lower lumbar 0.9333 ± 0.007 0.86 ± 0.015 – –

Aortic bifurcation 1 1 1 1

[13] – Kizilova and Mizerski (2018), [15] – Kizilova et al. (2019)
[11] – Kassa (2006), [28] – Wang and Parker (2004), [31] – Willemet et al. (2015)

The complex resistivity of the terminal 0D elements for each of the 57 side branching tubes
have been computed on the known geometries of the corresponding vasculatures based on the
parallel and serial addition of the connected tubes as it is explained in (Epstein et al., 2015).
In (Kizilova and Mizerski, 2018), a method based on consecutive corrections of the parameters
of the structured tree outflow boundary conditions was tested and validated based on in vivo
measurement data. It was found that any small variations in the branching constants ϕj , ψj that
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Fig. 4. Wave speed c [m/s] distribution along the aorta according to (Sun et al., 2000; Hollander et al.,
2001) (×), (Westerhof et al., 2006) (✸), (Kizilova, 2006) (✷), (Shipkowitz et al., 2000) (△)

determine the structured outflow trees j = 1, 2, . . . , N influenced the pressure and flow oscilla-
tions in the parent tube only, wheras the signals in other tubes remained almost unperturbed
(Kizilova and Mizerski, 2018). It may be connected to fast attenuation of the reflected waves and
small input of the multiple reflections (Nichols and O’Rourke, 2005). In that way, when the inlet
pressure profile was assigned in form (3.8), the first iteration of P (t) and V (t) computations in
sites I, II and others along the aorta exhibited noticeable differences with the measured signals
(Fig. 3) when the initial values ϕj = 1, ψj = 1 were used. When the calibration procedure for
ϕj , ψj values was conducted by the least square method, the computed curves became quite
close to the measured signals (Kizilova and Mizerski, 2018). In that way, the structured tree
outflow boundary conditions at the terminuses provided a better approximation giving different
wave impedances for different harmonics.

The signal P (t) at the inlet of the aorta typical for healthy humans (Nichols and O’Rourke,
2005; Epstein et al., 2015) has been taken in form (3.8) as a superposition of k = 8 harmonics.
The pressure and flow waveforms have been computed in the middle cross section of each segment
in the aortic model (Fig. 2), and the corresponding dependencies measured in vivo at locations
I-VII have been used for identification of individual parameters. The digitized signals (Fig. 3)
have also been presented as Fourier series (3.8) and compared to the corresponding harmonics
of the computed signals. The frequency in (3.8) has been determined by the individual heart
beat rate taken from the ultrasound data. When the model parameters had been identified, the
model was used for studying the influence of wall rigidity, wave reflection coefficients, geometry,
as well as model sensitivity to the parameters. Some of the results were reported in (Kizilova et
al., 2019; Kizilova and Mizerski, 2018).

6. Results and discussions

6.1. Model sensitivity

The model was found quite sensitive to wave reflection coefficients at certain locations crucial
for the wave reflection like at the level of cervical, kidney and iliac arteries. The P (t) and V (t)
waveforms at fixed relative locations x/L = 0.05, 0.25, 0.5, 0.75, 0.95 along the aorta are
presented in Fig. 5. The corresponding branches and wave speeds at their location can be found
in Table 1 and Fig. 4, respectively. When the resistivity of iliac arteries is twice higher than
the measured undisturbed individual values because of iliac stenosis or occlusion, the blood flow
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Fig. 5. Pressure P (t) – (a), (b) and flow rate Q(t) – (c), (d) distributions at different relative distances
along the aorta for low (a), (c) and high (b), (d) resistivity of iliac arteries



Pulse wave propagation along human aorta: a model study 29

becomes noticeably lower (Fig. 5d) in comparison to the unaffected values (Fig. 5c) at almost
the same systolic and diastolic pressures (Fig. 5a,b). It means that the blood outflow to the side
branches remains high but the low extremities suffer of blood insufficiency, and the blood inflow
to them is ∼ 1.8 lower than its unaffected value (Fig. 5c,d). In healthy vessels (E0 = 105-106 Pa),
the pressure wave attenuation and steepening along the artery is ehxibited, and a moderate
dicrotic wave in the diastolic part of the wave appears and develops (Fig. 5a). Changes in the
maximal pressure along the aorta are moderate provided that the wave reflection coefficients
correspond to the measured (or conventionally healthy) values. Therefore, due to small negative
wave reflection along the thoracic aorta (Kizilova and Mizerski, 2018) and the suction effect, the
dicrotic wave is absent along this path (Fig. 5a) and the flow rate is high with clear peak values
during the systole (Fig. 5b). Similar steepening and a higher dicrotic wave due to wave reflection
at the level of aortic bifurcation is observed in the case of high iliac resistivity (Fig. 5b). The
obtained results are in correspondence to the recent measurement data on the flow and pressure
waves in the aorta at different reflection coefficients of the iliac arteries (N28, 29 in Fig. 1).

6.2. Reverse blood flow at the end of systole

Reverse aortic blood flow at the end of systole is proper to human blood circulation. In
healthy patients, it has a short duration, whereas in the case of positive wave reflection coef-
ficients in the abdominal aorta (Kizilova and Mizerski, 2018), the wave reflection contributes
to a longer reverse flow and a lower blood flow rate to the mesenteric and other downstream
arteries. In in vivo conditions, the active vasodilatation/constriction reactions of the side vessels
can influence the blood distribution between the organs according to their demands. As it is
observed in the in vitro and in vivo databases, the scatter in the wave reflection coefficients
is always higher in a live patients (Kizilova et al., 2019; Hollander et al., 2001) because their
arteries are always physiologically constricted, whereas in the post-mortem state all arteries are
relaxed. Anyway, when the narrowing of some vessels is produced by stenosis, occlusion or other
pathological reasons, the autoregulatory reactions might be insufficient to maintain the needed
blood distribution along the aorta affected by the reverse flow at the end of systole (Salvi, 2017;
Hughes et al., 2013).

According to the results presented in Fig. 5c,d, the duration of the reverse flow (V < 0)
depends on the location along the aorta and the resistivity (i.e. wave reflection coefficient) at the
iliac arteries. The magnitude and duration of the reverse flow decreases along the thoracic aorta
and then starts to increase along the abdominal aorta, which corresponds to the measurement
results from the 55-tube tree (Wang and Parker, 2004) and numerous experimental data (Nichols
and O’Rourke, 2005; Salvi, 2017).

6.3. The aortic length must be scaled to 1 for correct analysis of the experimental data

The data on arterial diameters are more uniform than on lengths, which produces significant
differences in phases of the waves reflected at the same branches in different individuals. For
instance, the aortic length between the inlet and aortic bifurcations varied within 35-72 cm. When
the individual dimensions are scaled by the personal height, and then averaged and scaled to
a fixed height, it produces fewer differences between personal specific coordinates of the same
branches along the aorta (see Table 1). The simulation results obtained on the shorter aortic
model La = 33.5 cm (Epstein et al., 2015) exhibit early return of the reflected wave when the
arterial wall has the same viscoelastic properties in both short and long La = 70.5 cm (Hollander
et al., 2001) aortic models and, therefore, the wave speeds along the aorta are of the same values
(Fig. 4). Then the reflected wave is located closer to the pressure peak (Fig. 6a) than in the longer
aortic model (Fig. 5a,b). The blood velocity waveform demonstrates deeper and longer negative
peak at the end of the systole (Fig. 6b) than those in the longer aorta (Fig. 5c,d). Therefore,
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individual variations in geometry and geometry based wave reflection coefficients play more
essential role on the pulse wave dynamics along the aorta than other model parameters. When
the aortic length is scaled to 1, a clear regularity in the location of the sites of high positive,
zero and negative wave reflections appears. An example of the distribution of such locations can
be found in (Kizilova et al., 2019; Kizilova and Mizerski, 2018).

Fig. 6. Distributions of the V (t) (a) and P (t) (b) waveforms along short healthy aorta

6.4. Model validation

Since the blood pressure and flow could be measured on volunteers only at a restricted number
of locations, mostly over the larger side branches and the thoracic aorta were unavailable in the
US. The direct validation of the proposed aortic model is possible on special invasive catheter
measurements that will be done in future. In this paper, the existing data on evolution of pressure
and flow waves measured along aorta (1), our measurements on ten volunteers at seven locations
along aorta (2) as well as the patterns computed on the 55-tube model in literature (3) are used
for the model validation. The results are presented in Fig. 7. Thick black lines correspond to
typical flow waves proper to healthy arteries, which have been digitized from (Salvi, 2017). Since
the curves have been measured on individuals with different heights, they have been rescaled to
the average height over the database (171 cm). The dots correspond to the US measured curves
on ten healthy volunteers. For comparison reasons, the average height of the group (173.5 cm)
has been rescaled to 171 cm. The same rescaling has been done for the wave period (i.e. heart
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rate). Grey dashed lines correspond to the curves computed on the 93-tube model with the
model parameters identified from the averaged geometric model by the procedure described in
(Kizilova and Mizerski, 2018). Dotted lines have been rescaled from the numerical computations
on the 55-tube model (Wang and Parker, 2004). Qualitative differences with the last set of
curves may be explained by the inlet boundary conditions. In (Wang and Parker, 2004), the
computations were done for the sinusoidal type of flow oscillations in the aortic root, whereas in
the rest of curves the inlet flow corresponded to the realistic one that can be found in (Kizilova
and Mizerski, 2018) (curve I in Fig. 3) or in (Salvi, 2017).

Fig. 7. Flow waves V (t) at locations II (a), V (b), VI (c) (Fig. 1) along the aorta; experimental curves
from (Salvi, 2017) (solid lines), US measurements (dots), numerical computations on the developed

model (dashed lines) and on the 55-tube model (dotted lines)

As one can see, the developed 93-tube model of human aorta provides quite good qualitative
and quantitative correspondence to the in vivo measured signals and previous computations on
the simpler 21-tube model of aorta. In the case of healthy arteries, the pulse wave generated
by the heart propagates along the thoracic aorta at a relatively low wave speed (Fig. 4) and
late reflected waves producing small dicrotic waves at the end of diastole only. Due to smaller
diameter of the thoracic aorta and, therefore higher wave speed, the pulse wave accelerates and
the reflected waves contribute to its early diastolic part and peak, which produces well-known
wave peaking and steeping (Nichols and O’Rourke, 2005). That is why the wave amplitude
gradually decreases during the thoracic aorta and then again increases due to the peaking along
the abdominal aorta. Presence of the negative reflection sites along the thoracic aorta could
accelerate the flow but due to the low wave speed it will not produce noticeable peaking.
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After the validation, the model can be used for determination of individual parameters for
patient-specific cardiovascular models and further modeling of the outcomes of surgical and
therapeutic procedures.

7. Conclusions

The most detailed among the existing biomechanical models of human aorta, a 93-tube model
consisting of 36 aortic segments and 57 side branches is developed based on post mortem me-
asurements on 5 individuals. Statistical regularities in the branching and reflection coefficients
studied in (Kizilova et al., 2019; Kizilova and Mizerski, 2018) showed that aorta can be conside-
red as an optimal waveguide providing non zero wave reflections as it was shown on the simplified
21-tube model (10 aortic segments and 11 side branches) but negative wave reflections which
produced accelerated blood flow due to well-knows suction phenomena. A complex mathema-
tical model of the aorta based on the 1D and linearized 2D models of blood flow in the larger
arteries, 0D models for the terminal elements at the open end of the tubes has been developed.
The areas of specific interest for doctors like stenosis, coarctation, aneurism and others can be
modeled by the 3D FSI model. The model has been validated on the in vivo measurement data
(Kizilova and Mizerski, 2018). In this study, further numerical computations on the model aimed
at estimation of the model sensitivity to its parameters, regularities of the pressure and flow
wave evolution along the aorta at different wave reflection conditions have been conducted.

The physically consistent pressure wave peaking and steepening along the aorta, blood flow
decrease in the amplitude, negative flow at the end systole, and dicrotic wave appearance and
development due to numerous wave reflections have been obtained. It is shown that the individual
geometry plays an essential role in the location of positive and negative wave reflection sites along
the aorta and, thus, in the pressure and flow patterns as well as blood distribution into the side
branches. High sensitivity of the flow evolution along the aorta on the wave reflection coefficients
is confirmed. The numerical results show that the amplitude of pressure waves increases distally,
whereas the amplitude of velocity decreases in the abdominal aorta and then begins to increase.
The magnitude and duration of the reverse flow with negative velocity decreases and then begins
to increase in the abdominal aorta.

The model is validated by a comparative study of the same dependencies computed previously
on the 55-tube model and obtained from measurements. It can be used for determination of
individual parameters for patient-specific cardiovascular models and further modeling of the
outcomes of the surgical and therapeutic procedures.
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